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Modeling Wear of Multimaterial
Composite Surfaces
Iterative numerical wear models provide valuable insight into evolving material surfaces
under abrasive wear. In this paper, a holistic numerical scheme for predicting the wear
of rubbing elements in tribological systems is presented. In order to capture the wear
behavior of a multimaterial surface, a finite difference model is developed. The model
determines pressure and height loss along a composite surface as it slides against an ab-
rasive compliant countersurface. Using Archard’s wear law, the corresponding nodal
height loss is found using the appropriate material wear rate, applied pressure, and the
incremental sliding distance. This process is iterated until the surface profile reaches a
steady-state profile. The steady-state is characterized by the incremental height loss at
each node being nearly equivalent to the previous loss in height. Several composite topol-
ogies are investigated in order to identify key trends in geometry and material properties
on wear performance. [DOI: 10.1115/1.4032823]

1 Introduction

As the demand for low wear materials grows, so does the need
for accurate and fast wear predictions. The wear between contact-
ing rubbing solids is termed abrasive sliding wear when it
involves a harder material rubbed against softer materials [1–4].
Numerical analysis of wearing solids remains a critical engineer-
ing problem for design and manufacturing applications [5–15].
Iterative schemes have emerged as a convenient approach to
model the wear of tribological systems. The models predict the
topographical evolution of a wearing surface by integrating me-
chanical models with relationships between pressure, geometry,
and material wear properties.

Ling pioneered the domain of physics-based models (analytical
and numerical) for surface mechanics, friction, wear, and thermo-
elasticity [4,16–18]. Due to the complexity of many tribological
systems, very few simple solutions exist to predict the lifetime of
a given system. For simple mechanisms such as cylindrical bush-
ings, tribological behavior can be predicted using analytical solu-
tions [19–22], but more complex systems require numerical
methods. Often finite element modeling (FEM) and numerical
schemes are used to model surface mechanics, frictional heating
and wear [5–12,23]. In many of these wear simulations, FEM
models are used to calculate contact pressures, which are then
used to compute wear based on Archard’s wear law (wear is pro-
portional to sliding distance and contact pressure) [1,2]. These
computations can be challenging and time consuming, as systems
must be remeshed and FEM calculations repeated for each wear
iteration. This approach becomes even more difficult in composite
material systems where more than one material is present.

Recently, a finite difference model [24] has been used to simu-
late the wear of multimaterial three-dimensional (3D) systems
ranging from polymer composites to dinosaur teeth [25,26]. The
approach is based on a two-parameter Pasternak elastic foundation
wear model that has been validated and successfully used in previ-
ous numerical and experimental studies [5,14,27,28] (see Fig. 1).
One advantage of this approach is that contact pressure calcula-
tions are made quasi-analytically, reducing computational costs
compared to alternative methods like FEM. In particular, for a
given multimaterial surface, nodal wear height and curvature are
used to compute instantaneous pressure. With this pressure, local
wear loss for each node is found as a function of incremental slid-
ing distance (Ds) and the corresponding material wear rate (K).
This process is repeated until the composite system reaches a
steady-state configuration. Steady-state is determined when the
incremental height loss at each node is constant for all nodes.

In this article, the finite difference model previously presented
[24] is clarified and redefined in three dimensions and a paramet-
ric analysis is performed in order to identify key relationships
between model parameters, including elastic foundation parame-
ters (ks and kg) and geometric factors like area fraction and topol-
ogy. The paper is organized as follows. A summary of the finite
difference model previously implemented in Refs. [24–27] is pre-
sented. Then numerous steady-state wear profiles are computed as
part of a parametric study. Practical applications and potential
design rules based on the identified trends are discussed.

2 Wear Model Description

The linear abrasive wear model takes as input, the two-
dimensional (2D) material configuration within a design domain
and the corresponding material wear rate properties, as well as the
initial pressure loadings in the plane (Fig. 2). The material wear
rate for each node is defined as the steady-state wear rate of that
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single material in dry contact against an abrasive elastic founda-
tion. The model uses these inputs to predict the 3D evolution of
the initially flat or 2D wear surface under the initial pressure load.
The initially flat surface profile evolves to a nonuniform surface
topography because of differences in local wear rates. As the wear
continues, the surface topography evolves toward a steady-state
and the pressure profile distribution becomes uniform for each
material constituent (with magnitude inversely proportional to
wear rate, see Fig. 1(c)). The profile eventually reaches a steady-

state condition that recesses at a constant rate. This transient run-
in wear behavior was experimentally observed in Refs.
[24,27,29], and compared with numerical predictions of the
steady-state profile. The initially uniform pressure profile evolves
in a manner that depends on the local calculated curvature of the
worn surface profile. In this way, the model elucidates areas of the
design domain that will undergo more wear than others and how
the initial geometry or configuration plays a role in the final worn
surface for a given initial pressure and material distribution. The
components and assumptions of the wear model are described in
the following.

The model assumes that a composite material is on an elastic
Pasternak foundation. The Pasternak elastic foundation model is
composed of spring elements that are coupled with a bending
beam element; the corresponding parameters are ks and kg, respec-
tively (Fig. 2),

p ¼ ksd� kgr
2z (1)

where d is the local deflection of the elastic foundation with
respect to a moving height reference (recessing because of the

Fig. 2 Physical description of the numerical wear model. The Pasternak elastic founda-
tion model is composed of spring elements that are coupled with a bending beam ele-
ment; the corresponding parameters are ks and kg, respectively. The pressure applied at
each node is a function of the deflection of the spring element (d) and the local curvature
($2z).

Fig. 3 (a) and (b) Simplified diagram showing the discretiza-
tion of a composite surface. There are two materials (A, B) with
the wear rates Ka>Kb for this example. (c) Schematic worn
profile.

Fig. 1 Schematic of wear model that couples the evolution of
contact pressure and the surface topography. (a) Nonuniform
wear in multimaterial surfaces. The wear rate of material B, Kb,
is less than that of material A. (b) Schematic of pressure and
topography model. (c) Example evolution of contact pressure
and surface topography for a bimaterial surface after 0, 25, and
250 sliding cycles.
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wear process), z is the surface height, and r2z ¼ ð@2z=@x2Þ þ
ð@2z=@y2Þ is the Laplacian of z. The notation< �> refers to an av-
erage value of a parameter. The domain, X, has dimensions W,
width, by L, length. This domain is discretized into an M�N grid,
with the pixel dimensions: Dx¼W/M and Dy¼ L/N (Fig. 3). Ds is
an incremental sliding distance. The iterative scheme is used to pre-
dict the shape of the evolving surface, with i, j as subscripts to
denote spatial ordinates and the superscript, n, as an iteration coun-
ter. The evolving surface is then characterized by the height, zni;j, of
the worn profile at the position, (iDx, jDy) of the grid and after a
sliding distance, d¼ nDs. Following Ref. [27], an initially flat pro-
file is assumed and loaded with an initially uniform pressure distri-
bution, P0. An additional constraint that the average pressure, <p>,
must remain constant over the domain, X, is applied [27].

Each material (“a” and “b”) has its own distinct wear rate, Ka

or Kb of units (mm3/Nm). For an initial configuration, a composite
wear rate matrix is constructed, Ki,j, such that the matrix values
represent nodal values of the wear rate in the domain of the
sample surface. This is a known material input that also represents
initial surface material configuration.

For every iteration, n, the incremental wear depth relative to the
initially flat surface, Dh (mm), at a particular surface location (i, j)
is calculated

Dhni; j ¼ pni; j Ds Ki; j (2)

where Ds represents the incremental sliding distance and pni; j is the

evolved local pressure profile along the surface. The initial value,

pn¼1
i; j , is the average of the known applied pressure profile, P0.

Equation (1) is discretized in the following way:

pni;j ¼ ksd
n
i;j � kg

zniþ1;j � 2zni;j þ zni�1;j

Dx2
þ
zni;jþ1 � 2zni;j þ zni;j�1

Dy2

� �

(3)

where dni;j is the deflection at iteration n on the node i, j. The previ-
ous equation, Eq. (3), assumes extension by periodicity

znNþ1;j ¼ zn1;j; zn0;j ¼ znN;j; zni;Mþ1 ¼ zni;1; zni;0 ¼ zni;M (4)

are applied in order to ensure physical meaning at the domain
boundaries in Eq. (3) for all i, j such that 1� i�N and 1� j�M.
The constraint that the average pressure must remain a constant is
applied

P0 ¼
1

MN

X

i;j

pni;j (5)

As a result, the average of the deflection at iteration n must satisfy

<dni;j>¼
P0

ks
(6)

where the notation <v> denotes the discretized average of a
matrix

vi;j : <v>¼
1

MN

X

i;j

vni;j

Fig. 4 Model iterations revealing evolution of topography and compressive contact pressure for small-inclusion and large-
inclusion configurations with the same area fraction. Ka5 0.25 mm3/Nm, Kb5 0.025 mm3/Nm, ks50.28N/mm3, kg52.8N/mm,
P5 0.083 (MPa), Ds5 0.002, Aa5 0.441m. Note: Topography has fixed z-axis (not to 1:1 scale), but a changing color scale is
used for ease of visualization. Pressure has a fixed axis and colorscale.

Journal of Tribology OCTOBER 2016, Vol. 138 / 041605-3

Downloaded From: http://tribology.asmedigitalcollection.asme.org/ on 08/09/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use



This implies that the deflection in every point must be related to
the height of the profile zni;j by the relationship

dni;j ¼
P0

ks
þ zni;j� <zn> (7)

The local pressure profile evolves as follows:

pni;j ¼ P0 þ ks zni;j� <zn>
� �

� kg
zniþ1;j � 2zni;j þ zni�1;j

Dx2
þ
zni;jþ1 � 2zni;j þ zni;j�1

Dy2

� �

(8)

Defining the wear rate coefficient as Ki,j¼K(iDx, jDy), then the
profile at the next iteration, znþ1

i;j , is updated using Archard’s law
(Dh¼ pKDs)

znþ1
i;j ¼ zni;j � pni;jKi;jDs (9)

This procedure is the one that was followed by Rowe et al. in Ref.
[27] and similar schemes were also used in Refs. [5] and [24]. The
procedure is iterated sufficiently long for a steady-state to be
reached. The steady-state solution is determined when two succes-
sive increments, fni;j ¼ zni;j � zn�1

i;j and fnþ1
i;j ¼ znþ1

i;j � zni;j, have
equal local wear-loss at every point, that is,

max
jfnþ1

i;j � f
n
i;jj

jfni;jj
¼ � < �converge (10)

where �converge is a small parameter fixed based on desired level of
precision. It has been observed previously [10,30] that instabilities
can occur if Ds (Eq. (9)) is too small; this will be investigated in
future work.

3 Numerical Results and Discussion

The iterative model was used to find the steady-state wear
rate for varying material distributions and area fractions. In
every case, a 16� 16mm domain (160� 160 nodes) was
modeled with the following parameters: Ka ¼ 0:25mm3=N �m;
Kb ¼ 0:025mm3=N �m; ks ¼ 0:28N=mm3; kg ¼ 2:8N=mm, and
P¼ 0.083MPa. It should be noted that the wear rates of the two
materials are based on epoxy (K¼ 0.24 mm3/Nm) and PEEK
(K¼ 0.019 mm3/Nm) under abrasive conditions as reported by
Rowe et al. [27]. They were set at exactly an order of magnitude
apart to simplify comparisons and parametric evaluation of the
model. Simulations were run for a minimum sliding distance of
60m or, if additional iterations were required, until a value of
epsilon less than 10�6 was reached. The evolution of topography
and contact pressure for two different material topologies is
shown in Fig. 4 for various sliding increments. These topologies
consist of a matrix of material B with different size inclusions of
material A (Figs. 4(a) and 4(i)). In all cases, the area fraction of
material A is Aa¼ 0.441. In both cases, after 2m of sliding dis-
tance, there is a very high pressure region near the material
boundary (Figs. 4(e) and 4(m)). As the sliding distance increases,
the pressure maxima at the boundary of the two materials
decreases. The small-inclusion configuration’s pressure profile has
reached steady-state (�< 10�6) before 60m of sliding distance,
which is illustrated by the step-function-like pressure profile
(Fig. 4(p)). For the large-inclusion configuration, the pressure pro-
file has not converged with �< 10�6. It is still evolving after 60m
of sliding, as illustrated by the nonuniform pressure distributions
over each material domain (Fig. 4(h)). This difference is reflected
by the values of epsilon for the two cases (small-inclusions
�¼ 6.8x10�7, large-inclusion �¼ 6.6x10�6).

The total worn volume versus sliding distance for both circle
cases is shown in Fig. 5(a). In the plot, the star data markers repre-
sent the sliding distance when epsilon reduces by orders of

Fig. 5 Model iterations and convergence for several material topologies. (a)
A comparison of two 16316mm material distributions with the same area
fraction (Aa5 0.441). The more finely distributed material converges to a
steady-state wear rate with less sliding distance than the single inclusion do-
main. (b) Current wear rate for each iteration both configurations; example
values of convergence criterion (�) highlighted with star data points. (c)
Rescaled worn volume versus sliding distance to emphasize the difference
in run-in wear volume. Note: Ka5 0.25 mm3/Nm, Kb50.025 mm3/Nm,
ks5 0.28N/mm3, kg5 2.8N/mm, P5 0.083MPa, and Ds50.002m.
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magnitude, from 10�3 to 10�6 (Fig. 5(a) and Table 1). The sliding
distance to convergence for the large-inclusion distribution
(123m) was much greater than the small-circle distribution
(55.4m). Incremental wear rate versus sliding distance converges
to the steady-state wear rate value of 0.041 mm3/Nm (Fig. 5(b)).
The wear volume increases linearly with sliding distance at
steady-state (Fig. 5(c)). A proposed metric for how effective a ma-
terial distribution is at reaching steady-state wear for a given area
fraction is the run-in wear, Vrun–in (Eq. (11)); the run-in wear vol-
ume is shown graphically as the y-intercept of the steady-state
wear lines as they intersect the vertical axis in the worn volume
and sliding distance plot in Fig. 5(c)

Vrun�in ¼ Vtotal � KssPoWLdss (11)

where Vtotal is the total wear volume at convergence, Kss is the
steady-state wear rate, and dss is the sliding distance to steady-
state convergence. PoWL is the total applied force over the entire
surface, thus KssPoWLdss is the volume that would be worn if the
surface was wearing at the steady-state wear rate the entire time.

A number of numerical configurations were investigated
(Fig. 6). These show how material area fractions (ranging from
Aa¼ 0.01 to 0.994) influence the total wear rate (Fig. 6(a)),
steady-state wear rate (Fig. 6(b)), and run-in wear volume

(Fig. 6(c)). The simpler topologies (without finely distributed
inclusions) had greater total wear rates (Fig. 6(a)); their steady-
state wear rates (Fig. 6(b)) depend only on the area fraction. As
was noted by Rowe et al. [27], the steady-state wear rate for this
model follows an inverse rule of mixtures relationship based on
the individual material wear rates and the material area fractions
see Eq. (12). This

Kss ¼
Ka

Aa þ
Ka

Kb

1� Aað Þ
(12)

This can be extended to a composite surface with more than two
wear rates in the following equation:

Kss ¼
1

MN

X

M

i¼1

X

N

j¼1

K�1
ij

0

@

1

A

�1

(13)

where Kij is the wear rate at each pixel i, j over the MxN domain.
The effect of material distribution on run-in volume is shown in

Fig. 6(c). Larger run-in wear volumes are undesirable, as a large
amount of run-in could lead to premature failure of a composite

Fig. 6 Model results for various area fractions of material A (ranging
from 0.01 to 0.99). A 163 16mm domain (1603160 nodes) was modeled
with the following parameters: Ka5 0.25 mm3/Nm, Kb5 0.025 mm3/Nm,
ks5 0.28N/mm3, kg5 2.8N/mm, P5 0.083MPa, and Ds5 0.0002m. Total
wear rate (a), steady-state wear rate (b), and run-in volume (c) are shown
for various material configurations (d).

Table 1 Performance analysis of the iterative scheme considering varying convergence criteria, �converge

Convergence
criteria (�converge)

Sliding
distance

Volume lost
(mm3)

Wear rate
(mm3/Nm)

Percent error in wear
from steady-state

1� 10�3 0.656 1.56 0.106 154
1� 10�4 17.0 24.5 0.0494 19.1
1� 10�5 44.0 49.9 0.0425 2.48
1� 10�6 123 120 0.04153 0.175

1� 10�3 0.584 1.27 0.0924 123
1� 10�4 9.70 12.1 0.0445 7.39
1� 10�5 29.0 29.6 0.0417 0.665
1� 10�6 55.4 52.8 0.0415 0.0419
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part. Generally, larger domains that have less well-dispersed
inclusions have higher run-in volumes. Based on these parametric
studies for bimaterial composites, it is expected that the finer the
dispersion of inclusions, the better the run-in wear characteristics
will be.

The run-in wear volume is also a function of the elastic foun-
dation parameters. A parametric analysis was performed to study
the effect of kg/ks and Ka/Kb ratios on run-in wear volume at con-
vergence (�converge¼ 10�6). kg/ks was varied from 0.1 to 10, by
modifying kg for a fixed ks¼ 0.28N/mm3. The ratio Ka/Kb was
varied from 1.5 to 100 by solving for Ka and Kb for a fixed area
fraction Aa¼ 0.441 and steady-state wear rate Kss¼ 4.14x10�2

mm3/Nm; this is based off of the steady-state wear rate from the
area fraction study (see Fig. 6). A 16� 16mm domain
(160� 160 nodes) was modeled with the P¼ 0.083MPa. For a
given topology, as the bending term, kg, increases the run-in
wear volume decreases (see Fig. 7). This is because the kg term
represents the countersurfaces resistance to bending or curvature.
This results in lower peak-to-peak surface topography (between
high and low wearing materials) which manifests as lower run-in
volume. In this model, the steady-state wear rate is independent
of kg and ks.

4 Conclusions

An improved finite difference formulation for the wear of
multimaterial composite surfaces was presented that allows the
designer to investigate the influence of key material and geometric
parameters in the performance of engineered wear surfaces. The
developments include a clarified elastic foundation model, formal-
ized periodic boundary conditions, and a convergence criterion.
The model was used to predict the wear of numerous surface top-
ographies. This model is shown to be a promising component of
mechanical design for many applications ranging from tribologi-
cal (e.g., developing optimal composites for wear) to manufactur-
ing (e.g., designing surface topographies through topology).
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Nomenclature

Aa ¼ area fraction of material a
dss ¼ the sliding distance at steady-state or convergence
i ¼ column index (x-direction)
j ¼ row index (y-direction)
K ¼ wear rate
kg ¼ elastic foundation bending stiffness
ks ¼ elastic foundation normal stiffness
Ka ¼ wear rate of material a
Kb ¼ wear rate of material b
Kss ¼ steady-state wear rate
L ¼ model surface length (y-dimension)
M ¼ total number of columns in discretized surface

(x-direction)
n ¼ iteration number (sliding distance index)
N ¼ total number of rows in discretized surface

(y-direction)
p ¼ local pressure
Po ¼ nominal applied contact pressure

Vrun–in ¼ run-in volume
Vtotal ¼ total wear volume

W ¼ model surface width (x-dimension)
z ¼ surface height
d ¼ local deflection of elastic foundation
dx ¼ pixel dimension in x direction
dy ¼ pixel dimension in y direction
Dh ¼ local change in height caused by wear
Ds ¼ incremental slip distance

�converge ¼ model convergence factor
f ¼ incremental change in height for iteration of model
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